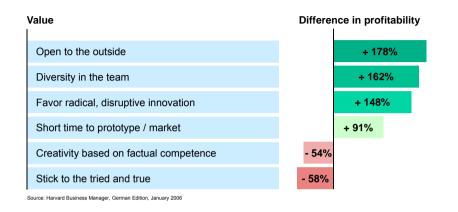


Or: The road to innovations is paved with roadblocks – *"Innovation-Funnel"*

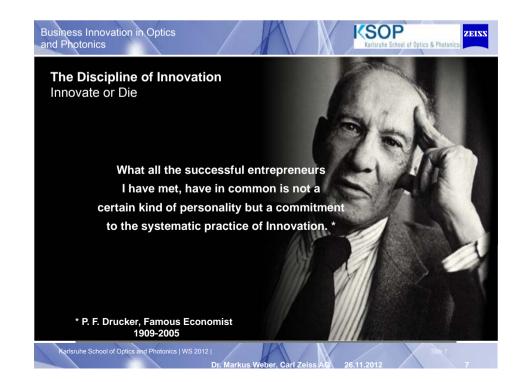
Quelle: Stevens, Burley: 3000 raw ideas = 1 commercial success, Research Technology Management 1997, Handelsblatt 2007

SOP

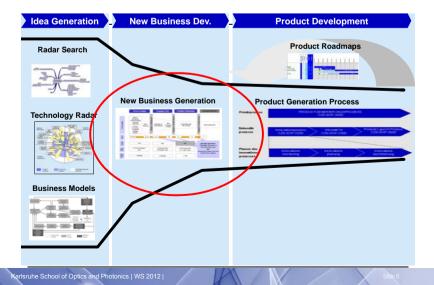
Karlsruhe School of Optics & Photonic


ZEISS

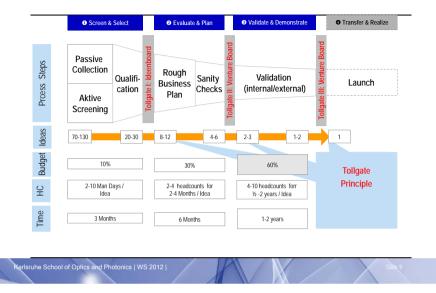
rlsruhe School of Optics and Photonics | WS 2012 |


Difference in profitability that proponents compared to opponents of a specific value implemented with their projects or products

(SOP

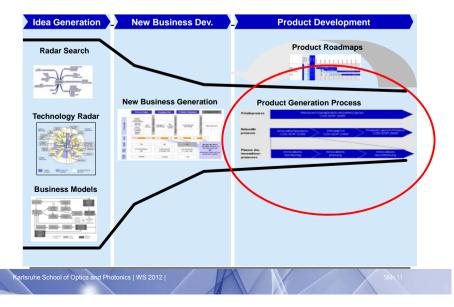

Karlsruhe School of Optics & Photoni

ZEISS



Structured Innovation Process is Needed to Focus Resources

New Business Generation Process Structures "Fuzzy Front End"



Tollgate II criteria allow focused discussions in the Carl Zeiss Venture Board

	Criterion	Fulfill- ment	Comments				
	More attractive than alternatives	0					
Business model	Unique selling point for CZ	0					
	Unique selling point is sustainable	O					
	Letter of intent from lead customer	0	Criteria are not				
Mentor-	Suitable CZ SBU	0	strict exclusion				
ship	Heads of divisions/business groups appointed as mentors	0	criteria, but the evaluation of the				
	Initial sales in 2 years from Tollgate III onwards	O	degree of criteria				
Business	Sales potential CZ > €50M	O	fulfillment serves to focus the				
Case	Target EBIT margin > 5%	O	discussion in the				
	12-year DCF > 0	O	Venture Board				
	Project team appointed	0					
Project planning	Measures for unfamiliarity risks	0					
	Validation milestones for uncertainty risks	0					
	Validation milestones for uncertainty risks	0	Slide 10				

Structured Innovation Process is Needed to Focus Resources

Define term "R&D project":

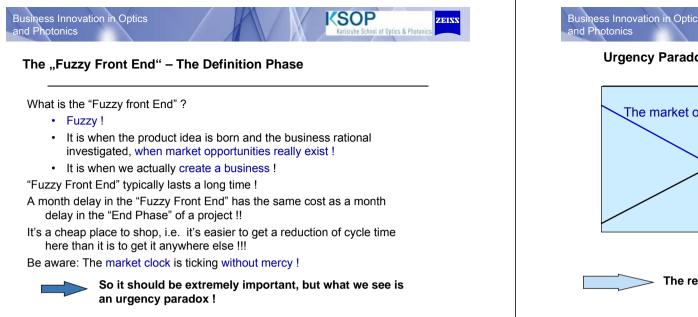
rlsruhe School of Optics and Photonics | WS 2012 |

Business Innovation in Optics

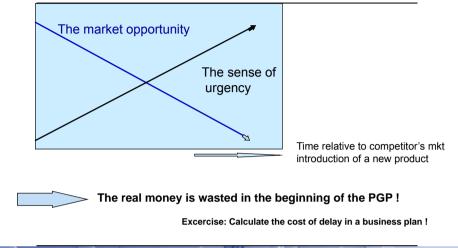
ZEISS

Karlsruhe School of Optics & Photoni

- · Show Stage-Gate-Process and Focus on product R&D part
- · Input: Market Driven Requirement Spec
- Output: Hand-over of final product design to production
- Illustrate Continuous cross-functional involvement of Product Management, Marketing, Production, Purchasing, Service
- Introduce R&D Project KPIs: Time, Budget, Features ٠
- Show project planning and tracking of KPIs: Activities, Work packages, Interfaces, Milestones, Critical Path

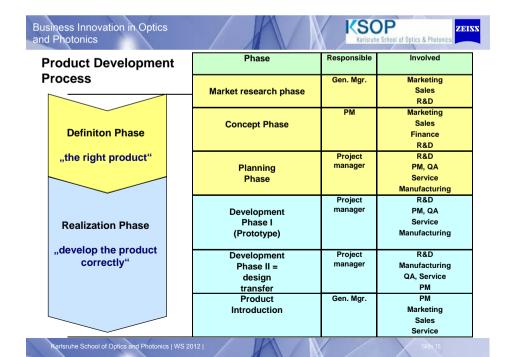

From "design" to "manage" an innovation project

ZEISS


ZEISS

(SOP

Karlsruhe School of Optics & Photoni



(SOP

Karlsruhe School of Optics & Photon

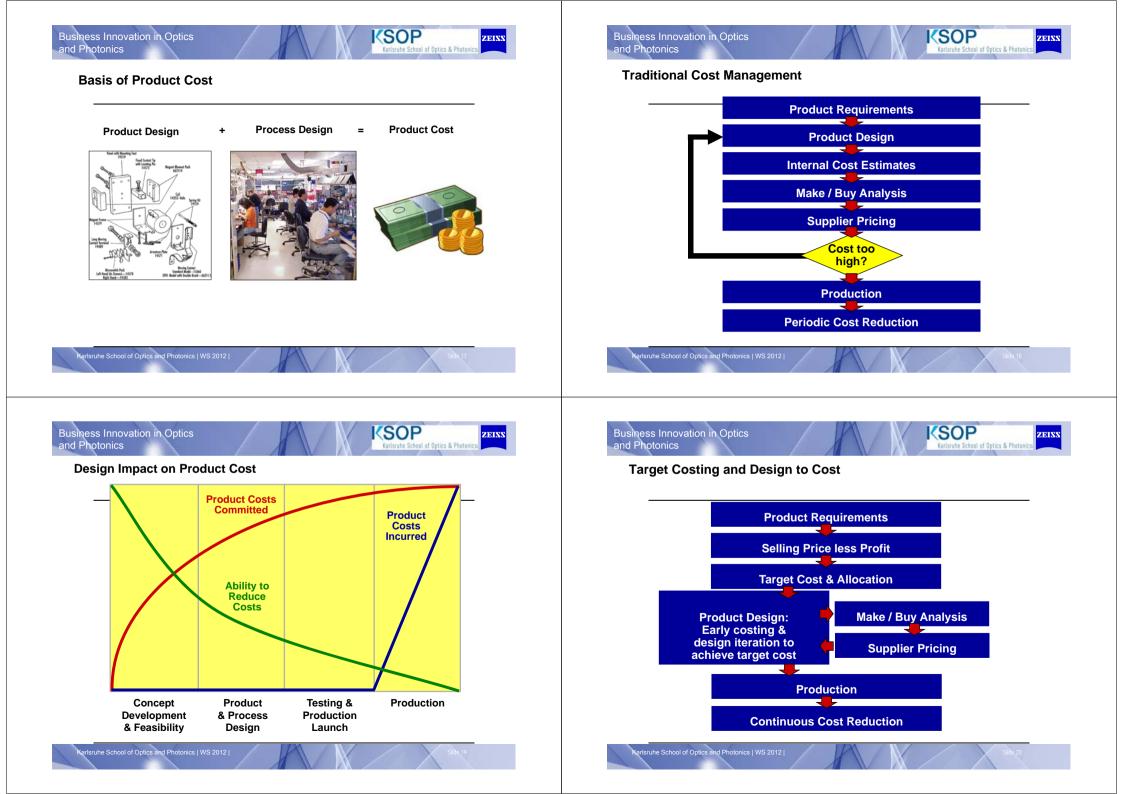
ZEISS

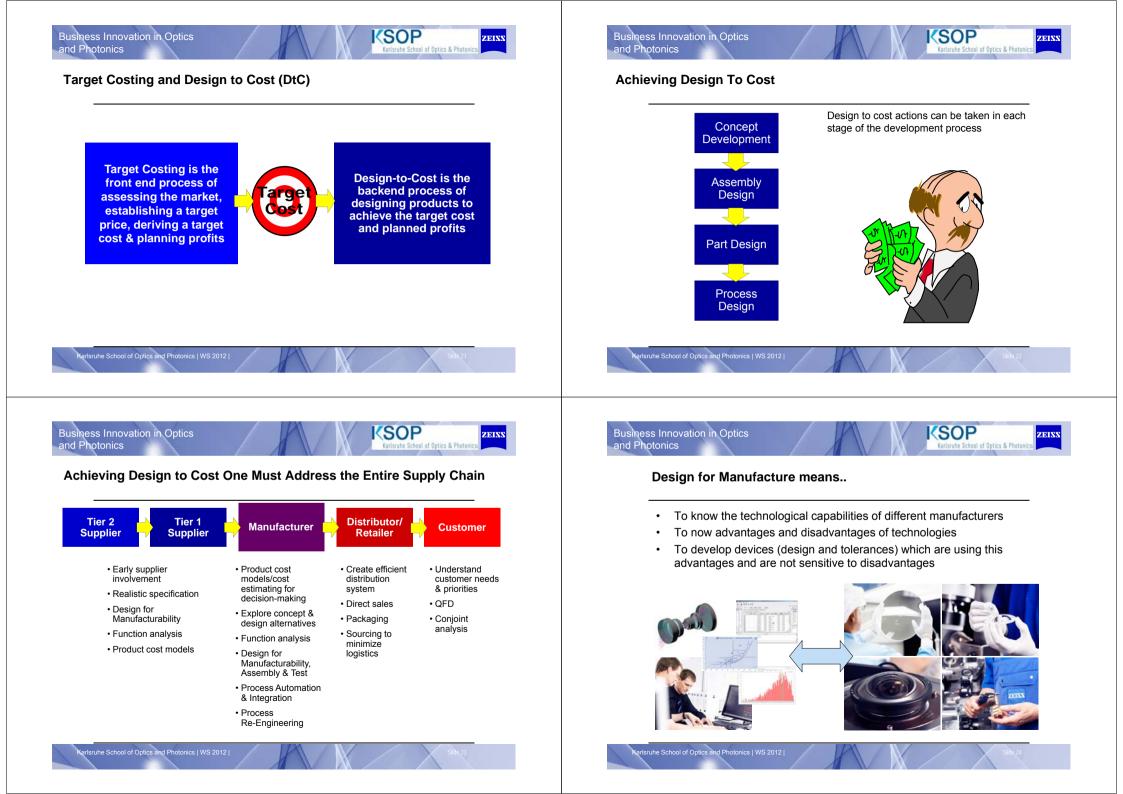
ZEISS

Isruhe School of Optics and Photonics | WS 2012 |

Topic II: Design to Cost and how to achieve it

• Step 1: Determine target cost:

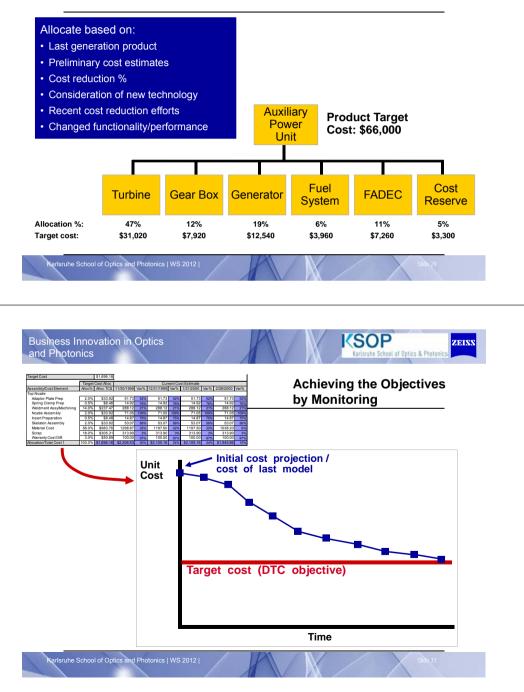

rlsruhe School of Optics and Photonics | WS 2012 |


Business Innovation in Optics

and Photonics

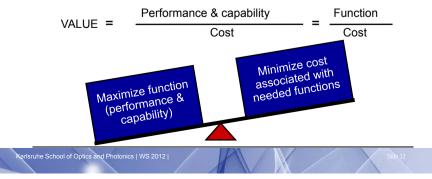
- · Benchmarking with comparable products
- Use case evaluation, price sensitivities, margin structures
- Output : → target cost
- · Use cost split of comparable systems to break down targets
- · Identify cost levers and focus on them
- Start with design to cost already in concept phase
- Regular review cost-performance trade-offs and update requirement specs (various tools like conjoint analysis)
- Design to Cost and suppliers/outsourcing
- Platforms

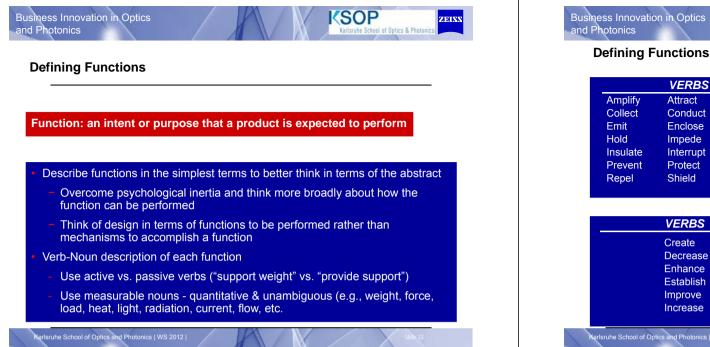
Karlsruhe School of Optics and Photonics | WS 2012 |



Allocate Target Cost to Provide Targets for Designers and to Monitor

Bill of Material (BoM)


Cho	w cost informati	on Cost data	bu elieking on field								Mate	erial	La	oor
				Target Cost		Current Est./Quoted		Current Estimate						
OM wel	Parent Part Number	Item Part Number	Description	Qty Per	Unit of Meas.	Make/ Buy/Std	Rev. Level	Revision Date	Unit Cost	Extended	Unit Cost	Extended	Unit Cost	Extended
1	99905	57740	MANUFACTURED ASSY Upconverter	1	EA	Make	D	15-Oct-03	0.0000	0.0000	0.0000	0.0000	4.67	4.6
2	57740	57741	MACHINED PART HOUSING UPCONVERTERERTER	1	EA	Make	С	27-Aug-03	0.0000	0.0000	84.7300	84.7300	1.36	1.3
2	57740	57742	MACHINED PART Upconverter SUB- COVER	1	EA	Make	F	26-Aug-03	0.0000	0.0000	15.4900	15.4900	0.33	0.3
2	57740	57765	MACHINED PART COVER REAR 1ST CONV	1	EA	Make	F	26-Aug-03	0.0000	0.0000	17.9600	17.9600	0.15	0.1
2	57740	59217	MACHINED PART GND PIN EXT PRESS FIT	6	EA	Make	с	13-May-03	0.0000	0.0000	7.3200	43.9200	0.28	1.6
2	57740	60373	MANUFACTURED ASSY CARRIER, UPCONVERTER VIRGO	1	EA	Make	F	25-Sep-03	0.0000	0.0000	106.7700	106.7700	3.58	3.5
2	57740	60855	MANUFACTURED ASSY Upconverter COVER ASSY	1	EA	Make			0.0000	0.0000	21.4400	21.4400	3.66	3.6
2	57740	20-135	TRANSISTOR, NPN 51,10V	1	EA	Buy			0.0000	0.0000	0.1800	0.1800	0.00	0.0
2	57740	230-213	FILTER, EMI, FEEDTH 100P, 80/- 20%, 200V, SPEC	11	EA	Buy			0.0000	0.0000	2.3300	25.6300	0.00	0.0
2	57740	57721-3	PC ASSY UpcnvtrTR BLK BIAS MOD.	1	EA	Make			0.0000	0.0000	38.8600	38.8600	0.00	0.0
2	57740	900-495	SCREW, SOCKET HD CAP, 0-80, 125 HEXSST	13	EA				0.0000	0.0000	0.0250	0.3250	0.00	0.0
2	57740	905-2623	SCREW,PAN,PHIL,PCHL,M3 M3X10MM,PHIL,PNHD,SST	15	EA				0.0000	0.0000	0.0260	0.3900	0.00	0.0
2	57740	K100	PRODUCT K-CONNECTOR GLASS BEAD K	3	EA				0.0000	0.0000	0.7700	2.3100	0.00	0.0
2	57740	K102F	PRODUCT FEMALE LAUNCHER CONNECTO	3	EA				0.0000	0.0000	1.9700	5.9100	0.00	0.0
									Totals:	987.0000		979.5750		67.8
	Karlsruhe S	ichool of Opi	tics and Photonics WS 2012	/		H	1			So	urce: PD		e 30 ww.pd-tr	ak.cor
	iness Ir Photor		on in Optics	/		K	1	1	\langle	KS	OP he School o	f Onting & E		ZEISS
ind	1 110101	1100								nariaria	ne ocnout o	i optica u i	ine connega	


(SOP

Karlsruhe School of Optics & Photoni

ZEISS

- Value/Function Analysis
 - Structured approach to defining a problem, gathering data, brainstorming & developing improvements in value
 - · Analyze the function performed by an item & relate component / mechanism costs to the functions they perform
 - · Consider how to avoid the need for functions and find lower cost ways to perform functions

WORK FUNCTIONS

SELL FUNCTIONS

Measurable

Current

Energy

Flow

Heat

Load

Torque

Weight

Change

Control

Filter

Induce

Modulate

Transmit

Reflect

VERBS

Attract

Conduct

Enclose

Impede

Interrupt

Protect

Shield

VERBS

rlsruhe School of Optics and Photonics | WS 2012 |

(SOP Business Innovation in Optics ZEISS and Photonics Karlsruhe School of Optics & Photonic Analyze with Function Cost Matrix Functions Improve Appearnace Accommodate Grip Display Information Remove Marks **Transmit Force** Cost (in cents) Eraser Protect Wood Support Lead <u>M</u>ake Marks Secure | Components % % ¢ % % % ¢ %¢ % ¢ ¢ ¢ .43 100 .43 Eraser Metal Band .25 50 .13 25 .06 25 .06 Lead 1.20 80 .96 20 .24 5.05 40.36 Body .94 10.09 40 .37 5 05 Paint .10 50 .05 50 05 Total 2.92 15 .43 4 .13 6 .20 29 .96 27 .67 2 05 2 05 13 38 2 05 rlsruhe School of Optics and Photonics | WS 2012 |

Albert Einsteir

(SOP

NOUNS

NOUNS

Karlsruhe School of Optics & Photoni

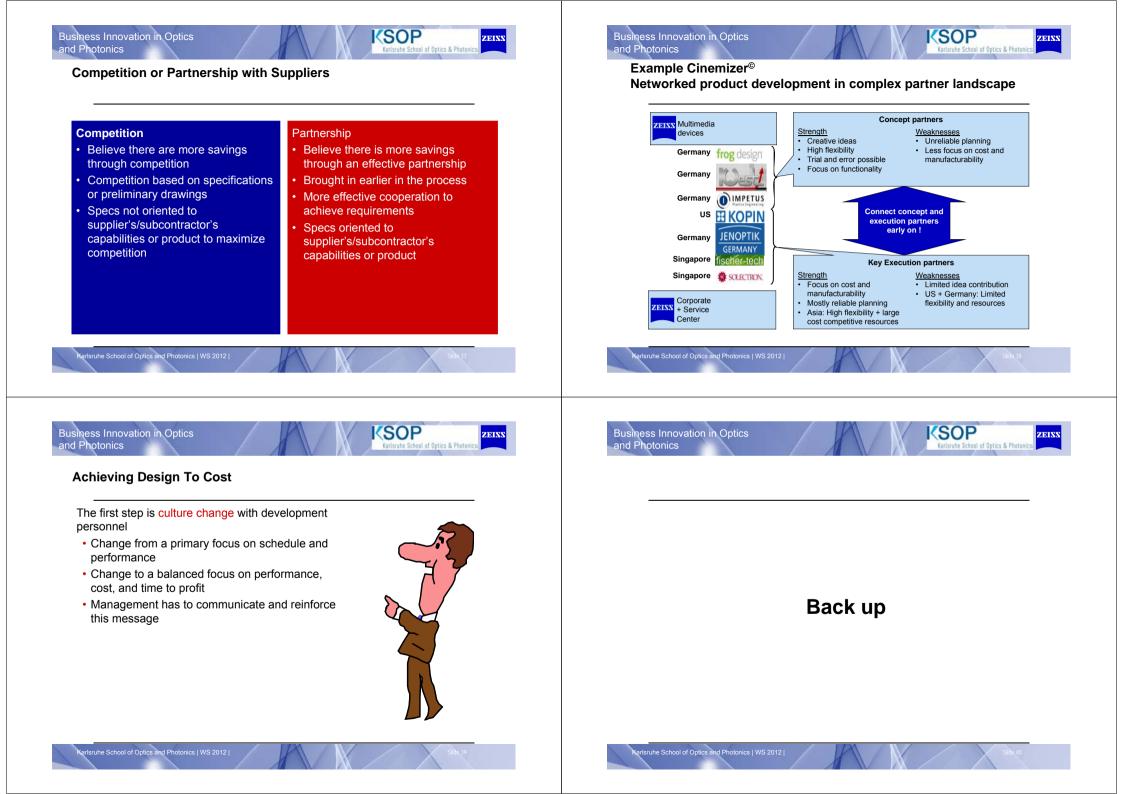
Non-Measurable

Component

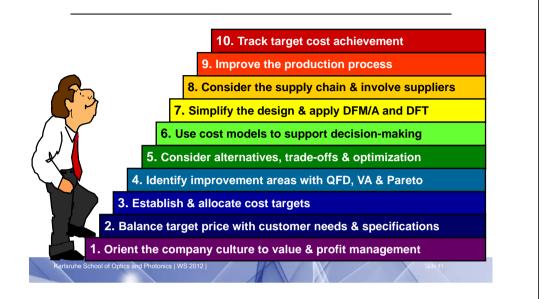
Circuit

Damage

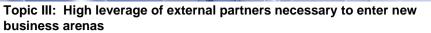
Device


Repair

Table


Part

ZEISS


ZEISS

Ten Steps to DTC

Business Innovation in Optics and Photonics

SOP

Karlsruhe School of Optics & Photoni

ZEISS

ZEISS

Carl Zeiss with tremendous pool of competences even in areas outside its core business

- Zeiss also with consumer electronics and mass production experiences
- · A mixed team of externally hired and internally staffed export is the optimum

Clear benefits of external partners

Isruhe School of Optics and Photonics | WS 2012 |

- Risk sharing and low asset base
- Faster learning curve for Zeiss
- Global networking enables combined leveraging of cost and expertise
 advantages

Interface management to external partners consumes a lot of energy and effort

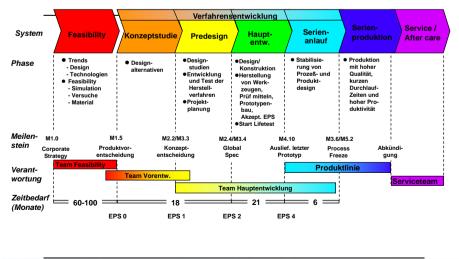
- Global network difficult to align, especially if the project cannot be fully modularized
- For areas new to Zeiss it is still the best way to in-source market and product
 expertise

Be realistic about your expectations and the role of the external partner

- Clearly separate concept and execution partners in R&D
- Have in-house expertise to understand and manage the partner's contribution

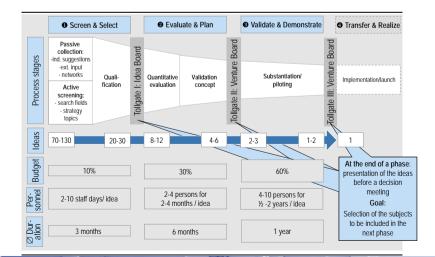
Cinemizer would not be a product by now without the significant external leverage

Business Innovation in Optics and Photonics


SOP

Karlsruhe School of Optics & Photoni

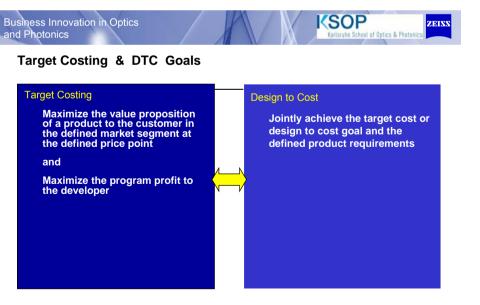
ZEISS


Product Generation Process Overview

sruhe School of Optics and Photonics | WS 2012 |

Process stages, number of ideas, required resources

Karlsruhe School of Optics and Photonics | WS 2012



Business	Innovation	in Optics	
and Phot	onice		

sruhe School of Optics and Photonics | WS 2012 |

KSOP Karlsruhe School of Optics & Photonics:

Traditional Cost Management	Target Costing / Design to Cost
No real cost or price planning	Market & competition drive price planning
Costs determine price	"Price to win" or target price determines costs
Waste, inefficiency & supplier costs are the focus of cost reduction efforts	Cost reduction is achieved by simultaneous product / process design
Cost reduction is reactive; occurs after the fact	Customer input guides requirements & cost planning
Little visibility of costs; lack of cost data and cost estimating tools	Structured cost data & estimating tools allow early feedback on design costs
Cost accounting & manufacturing responsible for cost	Cross-functional teams manage costs
Suppliers involved after product designed	Suppliers involved in concept and design of product

Karlsruhe School of Optics and Photonics | WS 2012 |

Achieving Design To Cost

Three fundamental actions:

 Analysis of Alternatives – development and analysis of architectural, concept and design alternatives

(SOP

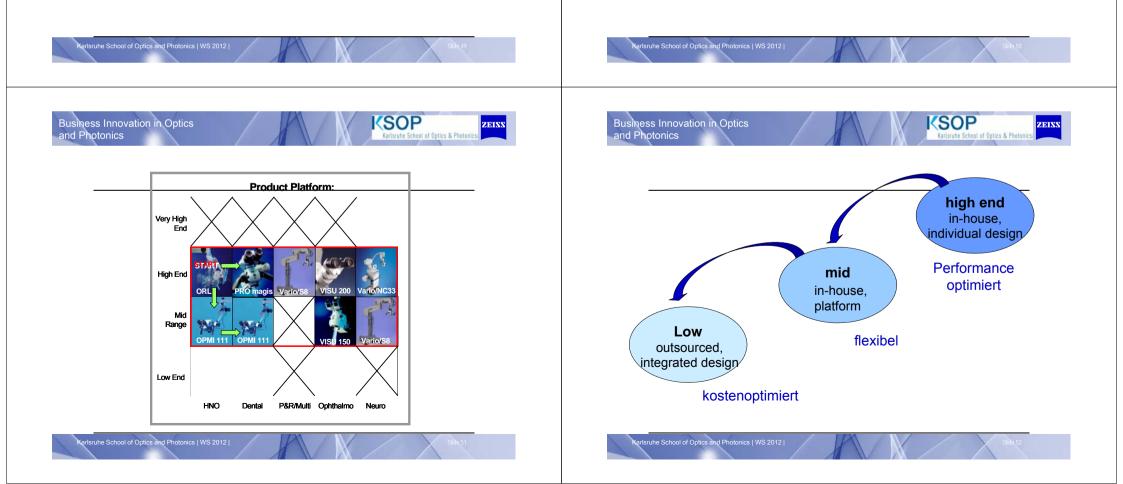
Karlsruhe School of Optics & Photonics

ZEISS

- Trade-offs consideration of architectural, concept and design alternatives that will result in trading off capability to meet customer needs in one area to improve capability to meet customer needs in another area, e.g., reduced performance for reduced cost
- Design Optimization refinement of design to drive down cost or improve performance or capability

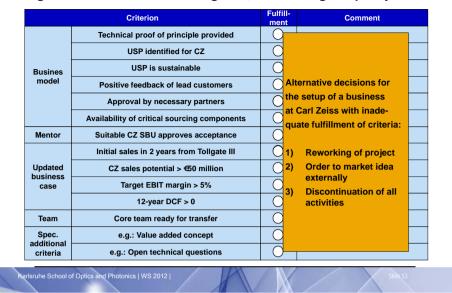
Karlsruhe School of Optics & Photoni

ZEISS

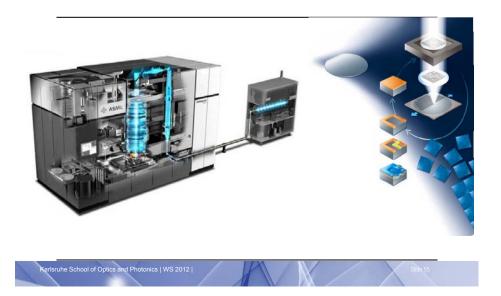

Definition Platform

A product platform is a set of subsystems and interfaces that form a common

structure from which a stream of derivative products can be efficiently


developed and produced.

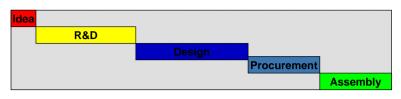
(The Power of Product Platforms, Marc H. Meyer, Alvin P. Lehned)



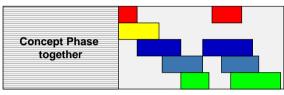
Tollgate III criteria similar to Tollgate II, but with higher quality

Lithography Optics by Carl Zeiss

(SOP

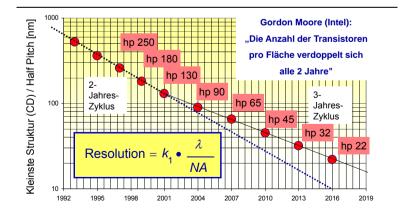

Karlsruhe School of Optics & Photon

ZEISS

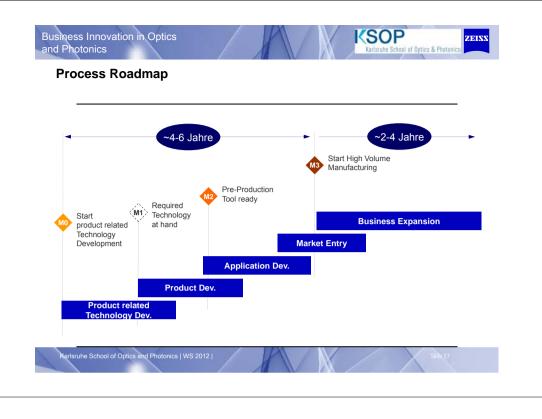


How to Reduce the Time to Market ?

Previously sequential processes


Today "Synchronous Develoment"

Business Innovation in Optics and Photonics


Roadmap of Semiconductor Industry

Isruhe School of Optics and Photonics | WS 2012 |

ZEISS

Karlsruhe School of Optics and Photonics | WS 2012 |

